Archives mensuelles : août 2015

Batterie de monocycle, comment ça marche

La plupart des roues utilisent des packs de 16 cellules LiIon en série. Il existe quelques rares variantes, InMotion avec 18 cellules, Pinwheel avec des batteries LiPo, Solowheel première génération avec des batteries LiFePo, donc les seuils indiqués ci-après sont à adapter mais le principe de fonctionnement reste le même.

Toutes les batteries possèdent un circuit BMS (battery management system) pour gérer la charge, notamment pour équilibrer les tensions des 16 cellules et pour couper automatiquement la charge et éviter une surcharge. Une grosse majorité de BMS incluent également une protection contre la décharge, ce qui est une horrible erreur de conception pouvant causer une coupure brutale d’alimentation et à l’origine d’innombrables accidents, parfois graves, cf. les articles consacrés au BMS.

A noter que selon Shane Chen lui-même, génial concepteur Solowheel qui a popularisé le concept de monocycle électrique, ses BMS ne coupent jamais le courant pendant le ride (ce qui est quand même la moindre des choses sur un monocycle !). En cas de problème de la batterie, ils se contentent juste de le signaler à la carte-mère par un fil de signal dédié, libre à celle-ci d’avertir le rider.

Capacités

Pour doubler la capacité du pack, une cellule supplémentaire est soudée en parallèle à chaque cellule existante (smallexis a fait un mod, retrouvez le par le bouton « recherche »). Pour tripler la capacité, deux cellules, pour quadrupler, 3 cellules (par exemple sur la Firewheel). La variante plus répandue, pour une question de facilité de câblage, consiste à mettre en parallèle deux packs chacun avec son propre BMS, par exemple deux packs de 340Wh en parallèle pour avoir une capacité de 680Wh sur les Gotways.

Seuils à connaîtres

Voici quelques valeurs caractéristiques de nos packs LiIon. Elles sont utiles à connaître pour charger & décharger correctement, pour faire un diagnostic rapide en cas de problème d’alimentation de la roue et pour surveiller le vieillissement (inévitable) de la batterie.
Les valeurs sont données pour une cellule et pour le pack (16 cellules en série, valeurs mesurées par le Charge Doctor)

Remarque V cellule V pack Seuil
1 3.0 48 Début détérioriation rapide
2 3.2 51 Minimum, éviter de descendre en dessous
3 3.45 55 Limite d’arrêt sur la plupart des wheels
4 3.6 58 Tension pour stockage
5 3.7 60 Nominal pour calcul de la valeur Wh
6 4.0 64 Circuit ouvert, après pleine charge
7 4.1 66 Déclenchement de l’équilibrage par BMS
8 4.2 67.2 Début charge à tension constante

(1) la batterie n’est pas forcément détruite par une tension aussi basse, seulement elle « en prend un coup », c’est un état de décharge prolongé à éviter
(2) cette limite n’est normalement jamais atteinte car la carte-mère arrête la roue et nous oblige à descendre avant. Si vous constatez cette valeur, c’est que votre pack a un problème, le plus souvent une ou deux cellules défectueuse.
(4) valeur indicative. On peut aussi utiliser le Charge Doctor pour faire une charge à 50% pour le stockage. Le but est de ne pas stocker trop chargé (plus le potentiel aux bornes de la membrane de séparation des charges est basse, plus on préserve cette membrane et donc la batterie), ni de stocker trop déchargé pour que l’autodécharge n’entraîne pas la batterie sous les limites néfastes pour les électrodes (cf (1) ).
(6) après la charge, en circuit ouvert (sans le chargeur branché), la tension a tendance à retomber, surtout si la batterie n’est plus de toute jeune.
(8) Zone de charge à tension constante : le courant baisse et en dessous de quelques dizaines de mA, la charge est coupée automatiquement par le BMS. Elle peut aussi être arrêtée manuellement lorsque la led rouge du chargeur passe à vert, ce qui correspond à une intensité de charge inférieure à 0,25A. A ce moment là, la batterie est quasiment à 100%, poursuivre la charge est inutile car l’on ne gagnera que quelques Wh.
(8) La tension au niveau de la prise de charge (lue par le Charge Doctor) peut être 68V à cause du BMS, notamment de la diode de protection contre les inversions de tension.

exemple de profil de charge (batterie Firewheel 260 Wh)

Utilisation pratique, précautions d’usage

  1. Il est préférable de ne pas charger à plus de 90% (voire 80%), ni de décharger à moins de 10% de la capacité afin de ménager la batterie. Même si bien sûr ce n’est pas toujours faisable pour les possesseurs de petites batteries, par exemple 130Wh, car l’autonomie en km et donc la pleine charge restent prioritaires.
    Une charge à 100% ou une décharge à 0% entraîne un vieillissement plus rapide des électrodes et de la membrane de séparation des électrolyte et réduit le nombre de cycles charge/décharge utiles. Les batteries LiIon n’apprécient pas du tout la surcharge.
    Concrètement, il suffit d’arrêter la charge quand l’intensité chute en dessous de 1A sur les chargeurs 2A (cf graphique). Pour la décharge, les roues s’arrêtent assez tôt par le relèvement des pédales pour qu’on n’ait pas à s’inquiéter d’une décharge profonde.
  2. Si la roue reste inutilisée pendant longtemps, par exemple plus d’un an, il convient de surveiller sa tension au bout de la période et d’éventuellement la recharger à 50% pour compenser l’auto-décharge. Celle reste cependant très faible (comparée aux batteries NiCd ou NiMh) et facilement gérable.
  3. Avec le Charge Doctor, archiver au moins une fois la courbe de charge de votre batterie pour comparer en cas de problème ou pour connaître l’état de vieillissement du pack après quelques mois ou années d’utilisation. C’est une courbe de référence qui donne beaucoup d’infos importantes, notamment pour déterminer la durée de charge pour charger à 90% (lire la tension en début de charge, la reporter sur la courbe puis déterminer le temps où le courant chute en dessous de 1A et utiliser ce temps pour signaler la fin de charge ou pour régler la coupure automatique par un programmateur horaire).

How to take care of your unicycle’s battery

Most unicycles use 16 LiIon battery cell packs. There are a few variants, InMotion battery has 18 cells, Pinwheel uses Lipo batteries, first generation Solowheels have LiFePo batteries, so the thresholds listed below are to be adapted but the operating principle remains unchanged.

All batteries have a BMS board (battery management system) to manage the cells, especially to balance the voltages of 16 cells and to automatically shut off charging current to prevent overcharge. A large majority of BMS also features overdischarge protection by cutting off power (without warning !!!), a horribly faulty design responsible for countless accidents, sometimes serious, see this blog’s BMS many articles.

Note that according to Shane Chen himself, Solowheel’s founder and popularizer of the electric unicycle concept, his BMS never cuts off power during a ride (vital requirement for an unicycle!). If the battery has a problem, the BMS just reports it to the mainboard thanks to a dedicated signal wire, the only reasonnable thing to do.

Battery capacities

To double the capacity of a 16S1P battery pack, an additional cell is welded in parallel to each existing cell to make a 16S2P (16 series or 2 parallel cells). Smallexis made such mod for his Airwheel Q3 battery, find it with the « search » button). To triple the capacity, add two cells (16S3P), to quadruple, add 3 cells (16S4P eg on the Firewheel 680Wh). The most common variant is two parallel packs, each with its own BMS, eg two packs 340Wh in parallel to have a capacity of 680Wh (Gotways).

Important thresholds

Here are some important values for a ??LiIon pack. They are useful to know to charge & discharge properly, to make a quick diagnosis in case of the wheel’s power supply problem and to monitor battery (inevitable) aging.
Values are for cell and pack (1 pack = 16 cells in series, values ??measured by the Charge Doctor )

Note V cell V pack Threshold
1 3.0 48 Quick deterioration
2 3.2 51 Minimum, avoid going below
3 3.45 55 Stop limit on most wheels
4 3.6 58 Storage voltage
5 3.7 60 For calculating the nominal value Wh
6 4.0 64 Open circuit after full load
7 4.1 66 Balance triggering by BMS
8 4.2 67.2 Constant voltage charge threshold

(1) the battery may not be destroyed by such a low voltage, it only « takes a hit ». This is a deep discharge state. Avoid at all costs !
(2) this limit is normally never reached because the wheel’s mainboard emits low voltage warnings (buzzer and/or pedals tilt-up) and forces the rider to descend before. If you have this value or lower, then your package has a problem, usually some defective cells.
(4) indicative value, may vary. Use this value to get 50% charge state for storage (a Charge Doctor counting capacity from voltage and current would be much more accurate). The goal is not to store the battery neither full (high voltages tend to stress the cell’s electrolytes separation membrane), nor empty to avoid self-discharge from deeply discharging the battery (see (1)).
(6) after the load, open circuit (no load) voltage tends to sag, especially if the battery is old.
(8) constant voltage charging zone: the charge current gradually decreases. When it is below a few tens of mA, the load is automatically switched off by the BMS. It can also be manually turned off by the user when the red LED on the charger switches to green, which corresponds to a charging current less than 0.25A. At this point, the battery is almost 100%, keeping on charging is unnecessary because only a few Wh would be added.
(8) The voltage at the charging socket (read by the Doctor load) may be 68V due to the BMS’s voltage drop, especially the reverse voltage protection diode.

Charge profile example (Firewheel 260 Wh)

Preserve the pack

  1. It is preferable to not charge more than 90% (even 80%), nor to discharge to less than 10% of the nominal capacity in order of the reduce stress to the battery. It’s not always possible with low capacity batteries (eg 130Wh) so if you have a beefy battery, just do it.
    A 100% charge or discharge to 0% results in a more stress to the electrolyte separation membrane and the electrodes respectively and reduces the number of usefull charge / discharge cycles. A LiIon battery does NOT like overcharge.
    Most of the times, it’s OK to stop charging when the current drops below 1A on a 2-ampere chargers (see graph). For discharge, the wheels stop early enough by raising the pedals so that we do not have to worry about a deep discharge.
  2. If the wheel is not used for a long time, eg more than a year, the battery should be voltage monitored and if necessary recharged to 50% to compensate for self discharge. However, LiIon battery’s self-discharge is very small (compared to NiCd or NiMh batteries) so checking it every year is enough.
  3. Log at least once the battery charging curve (using the Charge Doctor) and store it for later comparison in case of problems or to find the battery aging conditions after a few months or years of use. The reference curve gives a lot of important information, including how to determine the duration for charging to 90% (read the voltage at the beginning of charge, place the point on the curven use the x-axis to determine the time it takes for current fall below 1A, and use this duration to end the charge).